
Summary This application note provides users with a general understanding of the SVF and XSVF file
formats as they apply to Xilinx devices. Some familiarity with IEEE STD 1149.1 (JTAG) is
assumed. For information on using Serial Vector Format (SVF) and Xilinx Serial Vector Format
(XSVF) files in embedded programming applications, refer to application note XAPP058.

Introduction SVF is an industry standard file format that is used to describe JTAG chain operations in a
compact, portable fashion. SVF files are portable because complicated vendor-specific
programming algorithms can be conveyed by generic SVF instructions, requiring no special
knowledge of the target device.

File formats are given in Appendix A: SVF File Format for Xilinx Devices and Appendix B:
XSVF File Format.

SVF - General
SVF files are used to record JTAG operations by describing the information that needs to be
shifted into the device chain. The JTAG operations are recorded in the SVF file with iMPACT or
JTAG Programmer. SVF files are written as ASCII text and, therefore, can be read, modified, or
written manually in any text editor.

Many third-party programming utilities use an SVF file as an input and can program Xilinx
devices in a JTAG chain with the information contained in the SVF file.

XSVF - General
To provide the functionality of an SVF file in a compact, binary format, Xilinx has defined the
XSVF format. XSVF files are optimized for performing JTAG operations on Xilinx devices and
are intended for use in embedded applications.

Creating SVF
and XSVF Files

Creating an SVF File With 3.1i JTAG Programmer
For instructions on how to create an SVF file with JTAG Programmer, refer to the online
Software Manuals, located at: http://www.support.xilinx.com/support/library.htm

Creating an SVF File With 4.1i and 4.2i iMPACT Software
For instructions on how to create an SVF file with iMPACT, refer to the online Software Manuals,
located at: http://www.support.xilinx.com/support/library.htm.

Creating an SVF File With iMPACT Command Line
The iMPACT command line interface can be used to generate SVF files from the DOS or UNIX
command line. This is useful for situations where an automated SVF generation flow is
required.

Application Note: Xilinx Devices

XAPP503 (v1.0) April 17, 2002

SVF and XSVF File Formats for Xilinx
Devices
Authors: Brendan Bridgford and Justin Cammon

R

XAPP503 (v1.0) April 17, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/apps/xappsumm.htm#xapp058
http://www.support.xilinx.com/support/library.htm
http://www.support.xilinx.com/support/library.htm

SVF and XSVF File Formats for Xilinx Devices
R

For instructions on how to create an SVF file with the iMPACT command line interface, refer to
the on-line software manuals located at: http://www.support.xilinx.com/support/library.htm

Generating an XSVF File
XSVF files are generated by the SVF2XSVF file translator, which uses an SVF file written by
iMPACT or JTAG Programmer as an input file. The SVF2XSVF file translator is provided with
the downloadable files for application note XAPP058.

To create the XSVF file, first download the translator and unzip it to a directory. Use this syntax
to generate the XSVF file:

svf2xsvf –i <input_file.svf> -o <output_file.xsvf> -a
<text_xsvf.txt>

where:

-i designates the input file

-o designates the output file

-a designates an ASCII version of the XSVF file

See Figure 1 for an example of a binary XSVF file, as viewed with a HEX editor (.xsvf files are
binary and cannot be viewed with a text editor).

Refer to Xilinx Application Note XAPP058 for more information on the SVF2XSVF utility.

Understanding
SVF and XSVF
File Formats

BSDL Files and JTAG
The capabilities of any JTAG compliant device is defined in its Boundary Scan Description
Language (BSDL) file. BSDL files are written in VHDL and describe a device’s pinout and all its
Boundary Scan registers. All Xilinx BSDL files have a file extension of .bsd, although other
manufacturers may use different file extensions. Xilinx BSDL files are available for download at:
http://www.support.xilinx.com/support/sw_bsdl.htm

To understand SVF files, users need only be concerned with the following few sections of the
BSDL file:

• The Instruction Length Attribute

This attribute defines the length of a device’s Instruction Register (IR). The IR length is
chosen by the device manufacturer and is of arbitrary size greater than 2 bits.

• The Instruction Opcode Attribute

Figure 1: A Binary XSVF File, as Viewed With a HEX Editor

07 08 04 00 00 00 00 02 1D 1F FF FF FF 02 15 1F

FF DF 08 00 00 00 22 01 00 1F FF FF FF 09 00 00

00 00 00 01 F2 C0 81 26 02 15 1F FF FF 02 15 1F

FF DF 09 00 00 00 00 00 01 F2 C0 81 26 02 0D 1F

FF D2 15 1F FF FF 08 00 00 00 03 01 00 09 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

XAPP503_03_030102
2 www.xilinx.com XAPP503 (v1.0) April 17, 2002
1-800-255-7778

http://www.support.xilinx.com/support/library.htm
http://www.xilinx.com
http://www.xilinx.com/apps/xappsumm.htm#xapp058
http://www.xilinx.com/apps/xappsumm.htm#xapp058
http://www.support.xilinx.com/support/sw_bsdl.htm

SVF and XSVF File Formats for Xilinx Devices
R

This attribute defines the available JTAG instructions. Each JTAG instruction has its own
opcode, such as BYPASS, IDCODE, EXTEST, INTEST, etc. Some opcodes, such as the
opcode for the BYPASS instruction, are defined by IEEE 1149.1.a11. Other opcodes are
defined by the manufacturer.

• The IDCODE Register Attribute

Many JTAG compliant devices have a 32-bit IDCODE, which is stored in a special Device
ID register. The IDCODE can be used to identify the device manufacturer and part number.
To scan the Device ID register, shift the IDCODE instruction into the device, then shift the
IDCODE through the device’s Data Register (see Table 1). All Xilinx devices implement this
optional register.

All JTAG operations are controlled through a device’s Test Access Port (TAP). The TAP consists
of four signals: TMS, TDI, TDO, and TCK. These signals interact with the device through the
TAP Controller, a 16-state finite state machine. The JTAG TMS signal controls transitions
between states. Instructions and data are shifted into the device on the TDI pin and are shifted
out on the TDO pin. All state transitions and activity on the TDI and TDO signals are
synchronous to TCK. See Figure 2.

All JTAG operations shift data into or out of JTAG instruction and data registers. The TAP
Controller provides direct access to all of these registers. There are two classes of JTAG
registers: the Instruction register (only one) and Data registers (many). Access to the
Instruction Register is provided through the Shift-IR state, while access to the Data Register is
provided through the Shift-DR state.

To shift data through these registers, the TAP Controller of the target device must be moved to
the corresponding state. For example, to shift data into the Instruction Register, the TAP
Controller must be moved to the Shift-IR state, and the data shifted in, LSB first. See Figure 3.

Figure 2: JTAG TAP Controller State Diagram

1

x503_01_04/05/02

TEST-LOGIC-RESET

0 RUN-TEST/IDLE
1

SELECT-DR-SCAN

0

1

0

CAPTURE-DR CAPTURE-IR

0

1

0

0SHIFT-DR SHIFT-IR

1

0

1

0

EXIT1-DR EXIT1-IR

0

1

0

PAUSE-DR PAUSE-IR

1

0

1

EXIT2-DR

1

EXIT2-IR

1

UPDATE-DR

1

UPDATE-IR

1 SELECT-IR-SCAN

0 1 0

0 0

1

1

0

XAPP503 (v1.0) April 17, 2002 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

SVF and XSVF File Formats for Xilinx Devices
R

.

Basic SVF Commands
Shifts to the Instruction and Data registers are specified in SVF by two instructions:

1. Scan Instruction Register (SIR)

SIR length TDI (tdi) TDO (tdo) SMASK (smask);

where:

length – specifies the number of bits to be shifted into the Shift-IR state.

TDI – specifies the scan pattern to be applied to the Shift-IR state.

SMASK – specifies “don’t care” bits in the scan pattern.

2. Scan Data Register (SDR)

SDR length TDI (tdi) SMASK (smask) [TDO (tdo) MASK (mask)];

where:

length – specifies the number of bits to be shifted into the Shift-IR state.

TDI – specifies the scan pattern to be applied to the Shift-IR state.

SMASK – specifies “don’t care” bits in the scan pattern (1 = care, 0 = don’t care).

TDO – specifies the expected pattern on TDO while shifting through the Shift-DR state.

MASK – specifies “don’t care” bits in the expected TDO pattern (1 = care, 0 = don’t care).

The third SVF instruction of importance to Xilinx users is the RUNTEST instruction. The
RUNTEST instruction specifies an amount of time for the TAP Controller to wait in the Run-
Test-Idle state. This wait time is a required part of the programming algorithm for certain Xilinx
devices.

3. RUNTEST

RUNTEST run_count TCK;

These three SVF instructions can be used to perform nearly any JTAG operation on any JTAG-
compliant device.

Figure 3: Typical JTAG Architecture

IEEE Standard 1149.1 Compliant Device

TMS

Instruction Register

Instruction Decoder

Bypass[1] Register

IDCODE[32] Register

Boundary-Scan[N] Register

Select Data
Register

Shift-IR/Shift-DR
Select Next State

TAP State Machine

TCK

TDI

TDO

I/O I/O I/O I/O

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

XAPP503_05_030102
4 www.xilinx.com XAPP503 (v1.0) April 17, 2002
1-800-255-7778

http://www.xilinx.com

SVF and XSVF File Formats for Xilinx Devices
R

Specifying JTAG Shift Operations in SVF for Single-Device Chains

Table 1 shows the necessary activity on TDI and TMS to scan the IDCODE register of an
XC9572XL CPLD. The TAP states in Table 1 correspond to the diagram in Figure 2.

Table 1: JTAG Activity Required to Scan the IDCODE Register of an XC9572XL Device

Current TAP State
Next TAP
State(1) TDI TMS Notes

1.1 TLR RTI X(2) 0 TAP Reset State

1.2 RTI Select-DR-
Scan

X 1

1.3 Select-DR-Scan Select-IR-Scan X 1

1.4 Select-IR-Scan Capture-IR X 0

1.5 Capture-IR Shift-IR X 0

1.6 Shift-IR Shift-IR 0 0 Shift the least significant
bit (d0) first.

1.7 Shift-IR Shift-IR 1 0 Shift d1

1.8 Shift-IR Shift-IR 1 0 Shift d2

1.9 Shift-IR Shift-IR 1 0 Shift d3

1.10 Shift-IR Shift-IR 1 0 Shift d4

1.11 Shift-IR Shift-IR 1 0 Shift d5

1.12 Shift-IR Shift-IR 1 0 Shift d6

1.13 Shift-IR Exit1-IR 1(3) 1 Shift d7 while moving to
Exit1-IR

1.14 Exit1-IR Update-IR X 1 IDCODE instruction
(0xFE) has now been
passed to the device.

1.15 Update-IR Select-DR-
Scan

X 1 The IDCODE register is
now connected through
the TAP Shift-DR state.

1.16 Select-DR-Scan Capture-DR X 0

1.17 Capture-DR Shift-DR X 0

1.18 Shift-DR Shift-DR 0 0 Shift first bit of the device
IDCODE out on TDO

1.19 Shift-DR Shift-DR 0 0 Shift second bit of the
device IDCODE out on
TDO

1.20 Shift-DR Shift-DR 0 0 …repeat 29 times…

1.21 Shift-DR Exit1-DR 0 1 Shift last bit of the device
IDCODE out on TDO
while moving to

Exit1-DR
XAPP503 (v1.0) April 17, 2002 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

SVF and XSVF File Formats for Xilinx Devices
R

As Table 1 demonstrates, it is difficult to express JTAG operations in terms of the explicit activity
on TMS and TDI. SVF was created to address this problem. Table 2 gives the equivalent SVF
syntax to get an IDCODE from an XC9572XL device.

Explanation of Table 2

2.1 SIR 8 TDI (fe) ;

Shift “11111110” into the target Instruction Register (IDCODE Instruction)

2.2 SDR 32 TDI (00000000)

Shift 32 zeros through the Data Register to displace the 32-bit IDCODE. The expected
TDO values are 0xf9604093. This is the IDCODE for the XC9572XL.

Expected TDO output specified by the SDR instruction in Table 2 (item 2.2):

TDO – f9604093 : 1111 1001 0110 0000 0100 0000 1001 0011
Mask – 0fffffff : 0000 1111 1111 1111 1111 1111 1111 1111
Expected output: xxxx 1001 0110 0000 0100 0000 1001 0011
9572XL IDCODE: xxxx 1001 0110 0000 0100 0000 1001 0011

Notice that the SVF SIR and SDR instructions do not say how to move the TAP controller to the
Shift-IR and Shift-DR states. This is implied in the SVF standard and must be understood by the
program that reads the SVF file.

Specifying JTAG Shift Operations in SVF for Multiple Device Chains

When a JTAG chain contains more than one device, operations are typically performed on one
device at a time. Since the TMS and TCK signals are connected to all devices in parallel, it is
not possible to move the TAP Controller of one device independently of the TAP Controller of
another device. If an instruction is being shifted into one device in the chain, some instruction
must be shifted into each device in the chain (because each TAP Controller will be in the
Shift-IR state simultaneously).

1.22 Exit1-DR Update-DR X 1

1.23 Update-DR RTI X 0 Return to Run-Test-Idle;
Operation complete.

Notes:
1. All activity on TDI and TMS is synchronous to TCK.
2. ‘X’ indicates that TDI is ignored in this state.
3. The IR length of an XC9572XL is 8 bits; its IDCODE instruction is 0xFE .

Table 2: SVF Instructions to Scan the IDCODE Register of an XC9572XL Device

SVF Syntax Notes

2.1 SIR 8 TDI (fe) SMASK (ff); Shift the IDCODE Instruction to the
Instruction Register

2.2 SDR 32 TDI (00000000) TDO (f9604093)
SMASK (ffffffff) TDO (f9604093) MASK (0fffffff) ;

Shift the device IDCODE through
the Data Register

Table 1: JTAG Activity Required to Scan the IDCODE Register of an XC9572XL Device
6 www.xilinx.com XAPP503 (v1.0) April 17, 2002
1-800-255-7778

http://www.xilinx.com

SVF and XSVF File Formats for Xilinx Devices
R

When an operation is going to be performed on a device in the chain, the Bypass instruction is
issued to all other devices. IEEE 1149.1 requires that an IR value of all 1s be interpreted as the
Bypass instruction for any JTAG device (i.e., if a device’s IR is 5 bits long, its Bypass instruction
is “11111”; if a device’s IR is 8 bits long, its Bypass instruction is “11111111”). To issue the
IDCODE instruction to the XC9572XL device in this example, the Bypass instruction is given to
the XC18V02 and the XCV150 devices.

Placing a device in Bypass mode connects its 1-bit Bypass register to the Data Register (see
Figure 3).

After shifting in the IDCODE operation, the device Device ID register is scanned through the
Shift-DR TAP Controller state (Table 2, item 2.2). When the TAP Controllers in this example are
moved to the Shift-DR state, the data path becomes a 34-bit pipeline: one bit for the XC18V04

Figure 4: TAP Controller State Diagrams and IR Contents Prior to IR Shift

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

TDI TD0
Instruction Register [7:0]

XC18V02

TDI TD0
Instruction Register [7:0]

XC9572XL

TDI TD0
Instruction Register [4:0]

XCV150
XAPP503_06_40502

Figure 5: TAP Controller State Diagrams and IR Contents After Shifting the IDCODE Instruction

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

TDI TD0
Instruction Register [7:0]

XC18V02

TDI TD0
Instruction Register [7:0]

XC9572XL

TDI TD0
Instruction Register [4:0]

XCV150
XAPP503_07_040502

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10
XAPP503 (v1.0) April 17, 2002 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

SVF and XSVF File Formats for Xilinx Devices
R

Bypass register, 32 bits for the XC9572XL Device ID register, and one bit for the XCV150
Bypass register.

Table 3 gives the equivalent SVF instructions to scan the IDCODE Register of the XC9572XL
device in this three-device chain.

Explanation of Table 3

3.1. Shift 0x1fffdf (1_1111_1111_1111_1101_1111) into the Instruction Register chain:

XC18V02 IR <= “11111111” (Bypass)

XC9572XL IR <= “11111110” (IDCODE)

V150 IR <= “11111” (Bypass)

Note that the IR length of the V150 is 5 bits, and the IR lengths of the XC18V02 and
XC9572XL devices are both 8 bits (to learn the IR length of a particular device, refer to its
BSDL file). The SMASK value indicates that all twenty-one TDI shift bits are relevant.

3.2. Move to the Data Register TAP state, and clock it 34 times to displace the contents of
the two Bypass registers and the 32-bit Device ID register. The expected output is the 34
Data Register bits plus six additional bits to account for TAP controller state transitions, for
a total of 40 expected TDO bits.

TDO – 0012c08126: 0000 0000 0001 0010 1100 0000 1000 0001 0010 0110
Mask – 001ffffffe: 0000 0000 0001 1111 1111 1111 1111 1111 1111 1110
Expected output : xxxx xxxx xxx1 0010 1100 0000 1000 0001 0010 011x
9572XL IDCODE: x xxx1 0010 1100 0000 1000 0001 0010 011

Figure 6: TAP Controller State Diagrams and DR Contents After Shifting the IDCODE and BYPASS Instructions

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

TDI TD0
Bypass Register [0:0]

XC18V02

TDI TD0
IDCODE Register [31:0]

XC9572XL

TDI TD0
Bypass Register [0:0]

XCV150
XAPP503_08_040502

0x39604093 00

Table 3: SVF Instructions to Scan the Device ID Register of an XC9572XL Device in a
Three-Device Chain (XC18V02 ->XC9572 ->XCV150)

SVF Syntax Notes

3.1 SIR 21 TDI (1fffdf) SMASK (1fffff); Shift the IDCODE Instruction to the
Instruction Register chain

3.2 SDR 34 TDI (01fffffffe) SMASK (03ffffffff) TDO
(0012c08126) MASK (001ffffffe) ;

Shift the device IDCODE through the
Data Register chain
8 www.xilinx.com XAPP503 (v1.0) April 17, 2002
1-800-255-7778

http://www.xilinx.com

SVF and XSVF File Formats for Xilinx Devices
R

SVF Header and Trailer Instructions

Whenever an SVF file is used to perform operations on a chain of devices, several bits must be
accounted for that are not of interest. In Table 3, the SIR instruction had to shift the Bypass
instruction into the two devices that were not being operated on, and the SDR instruction had
to account for two Bypass registers and six other padding bits.

The number of “don’t care” bits in an SVF file increases with the size of the device chain, which
can dramatically increase the size of the SVF file. In many cases, several consecutive
operations are performed on the same device, each requiring that several “don’t care” bits be
specified.

To reduce the size of an SVF file, the SVF specification provides four global padding
instructions: Header Instruction Register (HIR), Trailer Instruction Register (TIR), Header Data
Register (HDR), and Trailer Data Register (TDR).

HIR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]

Specifies bits to follow1 subsequent Shift-IR instructions.

TIR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]

Specifies bits to precede1 subsequent Shift-IR instructions.

HDR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]

Specifies bits to follow subsequent Shift-DR instructions

TDR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]

Specifies bits to precede subsequent Shift-DR instructions.

These global commands specify the number of bits to pad the beginning and end of a shift
operation, to account for bypassed devices, and provide a simple method of SVF file
compression. Once specified, these bits lead or follow every set of bits shifted for the SIR or
SDR commands.

Explanation of Table 4

4.5 SIR Instruction Without TIR and HIR Instructions

SIR 21 TDI 1fffdf: 1 1111 1111 1111 1101 1111
 SMASK 1fffff: 1 1111 1111 1111 1111 1111
Resulting IR Shift:1 1111 1111 1111 1101 1111

1. SVF “Header” instructions specify padding bits at the end of a shift pattern, while “Trailer” instructions
specify padding bits at the beginning of a shift pattern. This is a common point of confusion, and may
initially seem counterintuitive.

Table 4: Comparison of the IDCODE Operation from Table 3 With and Without Global
Padding Instructions

SVF Syntax from Table 3 (without
global padding instructions)

SVF Syntax from Table 3 (with global
padding instructions)

4.1 TIR 8 TDI (ff) SMASK (ff) ;

4.2 HIR 5 TDI (1f) SMASK (1f) ;

4.3 HDR 1 TDI (00) SMASK (00) ;

4.4 TDR 1 TDI (00) SMASK (00) ;

4.5 SIR 21 TDI (1fffdf) SMASK (1fffff); SIR 8 TDI (fe) SMASK (ff) ;

4.6 SDR 34 TDI (01fffffffe) SMASK (03ffffffff)
TDO (0012c08126) MASK (001ffffffe) ;

SDR 32 TDI (00000000) SMASK (ffffffff)
TDO (f9604093) MASK (0fffffff) ;
XAPP503 (v1.0) April 17, 2002 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

SVF and XSVF File Formats for Xilinx Devices
R

4.5 SIR Instruction With TIR and HIR Instructions

TIR 8 TDI ff: 1 1111 111
 SMASK ff: 1 1111 111
SIR 8 TDI fe 1 1111 110
 SMASK ff 1 1111 111
HIR 5 TDI 1f: 1 1111
 SMASK 1f: 1 1111
Resulting IR Shift:1 1111 1111 1111 1101 1111

Each set of SVF instructions accomplishes the same Instruction Register Shift.

4.6 SDR Instruction Without TDR and HDR Instructions

TDO 0012c08126: 00 0001 0010 1100 0000 1000 0001 0010 0110
MASK 001ffffffe: 00 0001 1111 1111 1111 1111 1111 1111 1110
Expected Output: xx xxx1 0010 1100 0000 1000 0001 0010 011x

4.6 SDR Instruction With TDR and HDR Instructions

TDR 1 TDI 00: 0
 SMASK 00: 0

SDR TDO f9604093: 1 1111 0010 1100 0000 1000 0001 0010 011
MASK 0fffffff: 0 0001 1111 1111 1111 1111 1111 1111 111

HDR 1 TDI 00: 0
 SMASK 00: 0
Expected Output: xx xxx1 0010 1100 0000 1000 0001 0010 011x

9572XL IDCODE: x xxx1 0010 1100 0000 1000 0001 0010 011

Each set of SVF instructions expects the same output on the TDO pin.

Differences Between 3.1i JTAG Programmer and 4.1i iMPACT SVF Files

All SVF files written by 4.1i iMPACT use the global padding instructions. The older 3.1i JTAG
Programmer SVF files do not use these instructions.

XSVF Files

XSVF format is similar in form and function to the SVF format, but without the use of global
padding instructions. XSVF files are binary, making them far more compact than ASCII SVF
files. There are equivalent XSVF instructions for most SVF instructions:

Each XSVF instruction is 1 byte in length and is followed by an argument of variable length. A
detailed description of all XSVF instructions is provided in Appendix B: XSVF File Format.

Table 5: Equivalent XSVF Instructions for Some SVF Instructions

SVF XSVF

HIR, TIR Accounted for in XSIR instruction

SIR XSIR

HDR, TDR Accounted for in XSDR instruction

SDR XSDR, XSDRB, XSDRC, XSDRE,
XSDRTDO, XSDRTDOB, XSDRTDOC

RUNTEST XRUNTEST
10 www.xilinx.com XAPP503 (v1.0) April 17, 2002
1-800-255-7778

http://www.xilinx.com

SVF and XSVF File Formats for Xilinx Devices
R

Table 6 gives a side-by-side comparison of the SVF and XSVF instructions to scan the
IDCODE register of an XC9572XL device in a three-device chain.

Explanation of Table 6

6.8: XREPEAT 0x08 – Some devices (especially flash-based devices like the XC18V02
and the XC9572XL) can require more than one attempt at a given operation. The
XREPEAT instruction specifies the number of times that an instruction should be retried
before exiting with a failure.

6.9: XRUNTEST 0x00000000 – Denotes the amount of time in microseconds to remain in
the Run-Test/Idle TAP Controller state after scanning the Data Register.

Table 6: SVF Instructions to Scan the IDCODE Register of an XC9572XL Device in a
Three-Device Chain (XC18V02 ->XC9572 ->XCV150)

SVF File XSVF File (ASCII output)

6.1 TIR 0 ;

6.2 HIR 0 ;

6.3 TDR 0 ;

6.4 HDR 0 ;

6.5 // Validating chain...

6.6 TIR 0 ;

6.7 HIR 0 ;

6.8 TDR 0 ; XREPEAT 0x08

6.9 HDR 0 ; XRUNTEST 0x00000000

6.10 SIR 21 TDI (1fffff) SMASK (1fffff) TDO (002021) MASK
(1c7c63) ;

XSIR 0x1D 0x1fffffff

6.11 TIR 8 TDI (ff) SMASK (FF) ;

6.12 HIR 5 TDI (1f) SMASK (1F) ;

6.13 HDR 1 TDI (00) SMASK (01) ;

6.14 TDR 1 TDI (00) SMASK (01) ;

6.15 //Loading device with 'idcode' instruction.

6.16 SIR 8 TDI (fe) SMASK (ff) ; XSIR 0x15 0x1fffdf

6.17 XSDRSIZE 0x00000022

6.18 XTDOMASK 0x001ffffffe

6.19 SDR 32 TDI (00000000) SMASK (00000000) TDO
(f9604093) MASK (0fffffff) ;

XSDRTDO 0x0000000000
0x01f2c08126

6.20 //Check for Read/Write Protect.

6.21

6.22 SIR 8 TDI (ff) TDO (01) MASK (e3) ; XSIR 0x15 0x1fffff

6.23 //Loading device with 'idcode' instruction.

6.24 SIR 8 TDI (fe) ; XSIR 0x15 0x1fffdf

6.25 SDR 32 TDI (00000000) TDO (f9604093) ; XSDRTDO 0x0000000000
0x01f2c08126
XAPP503 (v1.0) April 17, 2002 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

SVF and XSVF File Formats for Xilinx Devices
R

6.10: XSIR 0x1D 0x1fff ffff – Specifies a shift of 0x1D (29) bits into the Instruction Register.
The scan pattern is 1_1111_1111_1111_1111_1111_1111_1111. This ensures that all
devices are in Bypass mode.

6.16: XSIR 0x15 0x1fffdf – Specifies a shift of 0x15 (21) bits into the Instruction Register.

XSVF: XSIR 0x15 0x1fffdf : 1 1111 1111 1111 1101 1111
SVF: SIR 8 TDI(fe) SMASK(ff) : 1 1111 110

TIR/HIR bypass padding : 1 1111 111 1 1111
Resulting SVF IR shift : 1 1111 1111 1111 1101 1111

XC18V02 IR <= “11111111” (Bypass)

XC9572XL IR <= “11111110” (IDCODE)

V150 IR <= “11111” (Bypass)

6.17: XSDRSIZE 0x00000022 – Indicates that the length of the next XTDO shift instruction
will be 0x22 (34) bits.

6.18: XTDOMASK 0x001ffffffe – Indicates which two bits are "don’t cares".

6.25: XSDRTDO 0x0000000000 0x01f2c08126 – TDO shift out.

XSVF: XSDRTDO 01f2c08126 : 01 1111 0010 1100 0000 1000 0001 0010 0110
XTDOMASK : 00 0001 1111 1111 1111 1111 1111 1111 1110
XSVF Expected Output : xx xxx1 0010 1100 0000 1000 0001 0010 011x

SVF: SDR f9604093 : 1 1111 0010 1100 0000 1000 0001 0010 011
TDR/HDR padding : 0 0
SVF Expected Output : 01 1111 0010 1100 0000 1000 0001 0010 0110

9572XL IDCODE : x xxx1 0010 1100 0000 1000 0001 0010 011

Note that there is a minor difference between the expected TDO output specified in the XSVF
file and the expected output given in the SVF file. The first and last bits expected by the XSVF
file are “don’t cares,” while the first and last bits expected by the SVF file are 0s.

When a device is placed in Bypass mode, its Bypass register is always initialized to 0. The
XSVF file ignores these bits; the SVF file expects to see 0s. Either method works.

Conclusion SVF files for Xilinx devices can be generated with Xilinx programming software – either iMPACT
or JTAG Programmer. XSVF files are created with the SVF2XSVF file translator, which is
available for download with Xilinx Application Note XAPP058.

SVF files are well suited for programming FPGA, EEPROM, and CPLD devices in-system,
because they shield the user from potentially complicated programming algorithms. They are
understood by many third-party SVF players and device programmers and have become a de
facto industry standard.

XSVF files are especially useful for embedded programming solutions, where in-system
configuration data can be stored in on-board memory. XSVF files can be read and played back
on a microprocessor using the source code provided in XAPP058.
12 www.xilinx.com XAPP503 (v1.0) April 17, 2002
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/apps/xappsumm.htm#xapp058
http://www.xilinx.com/apps/xappsumm.htm#xapp058

SVF and XSVF File Formats for Xilinx Devices
R

Appendix A:
SVF File Format
for Xilinx
Devices

SVF Overview
This appendix describes the Serial Vector Format syntax, as it applies to Xilinx devices; only
those commands and command options that apply to Xilinx devices are described.

An SVF file is the medium for exchanging descriptions of high-level IEEE 1149.1 bus
operations which consist of scan operations and movements between different stable states on
the 1149.1 state diagram (as shown in Figure 3). SVF does not explicitly describe the state of
the 1149.1 bus at every Test Clock (TCK).

An SVF file contains a set of ASCII statements. Each statement consists of a command and its
associated parameters, terminated by a semicolon. SVF is case sensitive and comments are
indicated by an exclamation point (!) or double slashes (//).

Scan data within a statement is expressed in hexadecimal and is always enclosed in
parenthesis. The scan data cannot specify a data string that is larger than the specified bit
length; the Most Significant Bit (MSB) zeros in the hex string are not considered when
determining the string length. The bit order for scan data defines the Least Significant Bit (LSB)
(rightmost bit) as the first bit scanned into the device for TDI and SMASK scan data, and it is the
first bit scanned out for TDO and MASK data.

The complete Serial Vector Format Specification, Asset-Intertech, 1999, is available at:

http://www.asset-intertech.com/support/svf.pdf

SVF Commands
The following SVF Commands are supported by the Xilinx devices:

• Scan Data Register (SDR)

• Scan Instruction Register (SIR)

• RUNTEST

For each of the following command descriptions:

• The parameters are mandatory.

• Optional parameters are enclosed in brackets ([]).

• Variables are shown in italics.

• Parenthesis “()”are used to indicate hexadecimal values.

• A scan operation is defined as the execution of an SIR or SDR command and any
associated header or trailer commands.

SDR, SIR

SDR length TDI (tdi) SMASK (smask)

[TDO (tdo) MASK (mask)];

SIR length TDI (tdi) TDO SMASK (smask);

These commands specify a scan pattern to be applied to the target scan registers. The Scan
Data Register (SDR) command specifies a data pattern to be scanned into the target device
Data Register. The Scan Instruction Register (SIR) command specifies a data pattern to be
scanned into the target device Instruction Register.

Prior to scanning the values specified in these commands, the last defined header command
(HDR or HIR) is added to the beginning of the SDR or SIR data pattern and the last defined
trailer command (TDR or TIR) is appended to the end of the SDR or SIR data pattern.

Parameters:

Length — A 32-bit decimal integer specifying the number of bits to be scanned.

[TDI (tdi)] — (optional) The value to be scanned into the target, expressed as a hex value.
If this parameter is not present, the value of TDI to be scanned into the target device is the
TDI value specified in the previous SDR/SIR statement. If a new scan command is
specified, which changes the length of the data pattern with respect to a previous scan, the
XAPP503 (v1.0) April 17, 2002 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com
http://www.asset-intertech.com/support/svf.pdf

SVF and XSVF File Formats for Xilinx Devices
R

TDI parameter must be specified, otherwise the default TDI pattern is undetermined and is
an error.

[TDO (tdo)] — (optional) The test values to be compared against the actual values scanned
out of the target device, expressed as a hex string. If this parameter is not present, no
comparison is performed. If no TDO parameter is present, the MASK is not used.

[MASK (mask)] — (optional) The mask to be used when comparing TDO values against the
actual values scanned out of the target device, expressed as a hex string. A “0” in a specific
bit position indicates a “don’t care” for that position. If this parameter is not present, the
mask equals the previously specified MASK value specified for the SIR/SDR statement. If
a new scan command is specified which changes the length of the data pattern with
respect to a previous scan, the MASK parameter must be specified, otherwise the default
MASK pattern is undefined and is an error. If no TDO parameter is present, the MASK is
not used.

[SMASK (smask)] — (optional) Specifies which TDI data is “don’t care”, expressed as a hex
string. A “0” in a specific bit position indicates that the TDI data in that bit position is a “don’t
care”. If this parameter is not present, the mask equals the previously specified SMASK
value specified for the SDR/SIR statement. If a new scan command is specified which
changes the length of the data pattern with respect to a previous scan, the SMASK
parameter must be specified, otherwise the default SMASK pattern used is undefined and
is an error. The SMASK is used even if the TDI parameter is not present.

Example:

SDR 27 TDI (008003fe) SMASK (07ffffff) TDO (00000003) MASK (00000003);
SIR 16 TDO (ABCD);
HDR, HIR, TDR, TIR
HDR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]
HIR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]
TDR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]
TIR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]

These commands specify header and trailer bits for data and instruction shifts. Once specified,
these bits lead or follow every set of bits shifted for the SIR or SDR commands. These
commands are used to specify bits for non-target (bypassed) devices in the scan chain.

The parameters are the same as the SIR and SDR commands.

Example:

HDR 1 TDI (0);
TDR 3 TDI (0);
HIR 8 TDI (ff);
TIR 24 TDI (ffffff);

RUNTEST

RUNTEST run_count TCK;

This command forces the target IEEE 1149.1 bus to the Run-Test/Idle state for a specific
number of microseconds, then moves the target device bus to the IDLE state.

The RUNTEST command is typically used to control RUNBIST operations in the target device.
Some Xilinx devices require a pause between programming operations; Xilinx uses the
RUNTEST operation for this purpose in SVF files. To calculate the number of TCK cycles
required for a pause, Xilinx software assumes a TCK frequency of 1 MHz.

Parameters:

run_count — The number of TCK clock periods that the 1149.1 bus remains in the Run
Test/Idle state, expressed as a 32 bit unsigned number.

Example:

RUNTEST 1000 TCK;
14 www.xilinx.com XAPP503 (v1.0) April 17, 2002
1-800-255-7778

http://www.xilinx.com

SVF and XSVF File Formats for Xilinx Devices
R

Appendix B:
XSVF File
Format

This appendix includes the XSVF Commands, the instructions that are supported, their
arguments, and definitions.

XSVF Commands
The following commands describe the IEEE 1149.1 operations in a way that is similar to the
SVF syntax. The key difference between SVF and XSVF is that the XSVF file format affords
better data compression and, therefore, produces smaller files.

The format of the XSVF file is a 1-byte instruction followed by a variable number of arguments
(as described in the command descriptions below). The binary (hex) value for each instruction
is shown in Table 7.

XTDOMASK

XTDOMASK value<“length” bits>

XTDOMASK sets the TDO mask which masks the value of all TDO values from the SDR
instructions. Length is defined by the last XSDRSIZE instruction. XTDOMASK can be used
multiple times in the XSVF file if the TDO mask changes for various SDR instructions.

Example:

XTDOMASK 0x00000003

This example defines that TDOMask is 32 bits long and equals 0x00000003.

Table 7: Binary Encoding of XSVF Instructions

XSVF Instruction Binary Encoding (hex)

XCOMPLETE 0x00

XTDOMASK 0x01

XSIR 0x02

XSDR 0x03

XRUNTEST 0x04

XREPEAT 0x07

XSDRSIZE 0x08

XSDRTDO 0x09

XSETSDRMASKS 0x0a

XSDRINC 0x0b

XSDRB 0x0c

XSDRC 0x0d

XSDRE 0x0e

XSDRTDOB 0x0f

XSDRTDOC 0x10

XSDRTDOE 0x11

XSTATE 0x12

XENDIR 0x13

XENDDR 0x14

XSIR2 0x15

XCOMMENT 0x16
XAPP503 (v1.0) April 17, 2002 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

SVF and XSVF File Formats for Xilinx Devices
R

XREPEAT

XREPEAT times<1 byte>

Defines the number of times that TDO is tested against the expected value before the ISP
operation is considered a failure. By default, a device can fail an XSDR instruction 32 times
before the ISP operation is terminated as a failure. This instruction is optional.

Example:

XREPEAT 0x0f

This example sets the command repeat value to 15.

XRUNTEST

XRUNTEST time<4 bytes>

Defines the amount of time (in microseconds) the device should sit in the Run-Test/Idle state
after each visit to the SDR state. The initial XRUNTEST time is zero microseconds.

Notes:
1. For the Virtex™-II device, the time parameter must be interpreted as the minimum number of TCK

pulses issued within the Run-Test/Idle state after each visit to the SDR state.

Example:

XRUNTEST 0x00000fa0

This example specifies an idle time of 4000 microseconds.

XSIR

XSIR length<1 byte> TDIValue<“length” bits>

Go to the Shift-IR state and shift in the TDIValue. If the last XRUNTEST time is non-zero, go to
the Run-Test/Idle state and wait for the last specified XRUNTEST time. Otherwise, go to the last
specified XENDIR state.

Example:

XSIR 0x08 0xec

XSDR

XSDR TDIValue<“length” bits>

Go to the Shift-DR state and shift in TDIValue; compare the TDOExpected value from the last
XSDRTDO instruction against the TDO value that was shifted out (use the TDOMask which
was generated by the last XTDOMASK instruction). Length comes from the XSDRSIZE
instruction.

If the TDO value does not match TDOExpected, perform the exception handling sequence
described in the XC9500 programming algorithm section. If TDO is wrong more than the
maximum number of times specified by the XREPEAT instruction, then the ISP operation is
determined to have failed.

If the last XRUNTEST time is zero, then go to the XENDDR state. Otherwise, go to the
Run_Test/Idle state and wait for the XRUNTEST time.

Example:

XSDR 02c003fe

XSDRSIZE

XSDRSIZE length<4 bytes>

Specifies the length of all XSDR/XSDRTDO records that follow.

Example:

XSDRSIZE 0x0000001b

This example defines the length of the following XSDR/XSDRTDO arguments to be 27 bits (4
bytes) in length.
16 www.xilinx.com XAPP503 (v1.0) April 17, 2002
1-800-255-7778

http://www.xilinx.com

SVF and XSVF File Formats for Xilinx Devices
R

XSDRTDO

TDIValue<“length” bits>

TDOExpected<“length” bits>

Go to the Shift-DR state and shift in TDIValue; compare the TDOExpected value against the
TDO value that was shifted out (use the TDOMask which was generated by the last
XTDOMASK instruction). Length comes from the XSDRSIZE instruction.

If the TDO value does not match TDOExpected, perform the exception-handling sequence
described in the XC9500 programming algorithm section. If TDO is wrong more than the
maximum number of times specified by the XREPEAT instruction, then the ISP operation is
determined to have failed.

If the last XRUNTEST time is zero, then go to XENDDR state. Otherwise, go to the
Run_Test/Idle state and wait for the XRUNTEST time.

The TDOExpected Value is used in all successive XSDR instructions until the next XSDR
instruction is given.

Example:

XSDRTDO 0x000007fe 0x00000003

For this example, go to the Shift-DR state and shift in 0x000007fe. Perform a logical AND on the
TDO shifted out and the TDOMASK from the last XTDOMASK instruction and compare this
value to 0x00000003.

XSDRB

XSDRB TDIValue<“length” bits>

Go to the shift-DR state and shift in the TDI value. Continue to stay in the shift-DR state at the
end of the operation. No comparison of TDO value with the last specified TDOExpected is
performed.

XSDRC

XSDRC TDIValue<“length” bits>

Shift in the TDI value. Continue to stay in the shift-DR state at the end of the operation. No
comparison of TDO value with the last specified TDOExpected is performed.

XSDRE

XSDRE TDIValue<“length” bits>

Shift in the TDI value. At the end of the operation, go to the XENDDR state. No comparison of
TDO value with the last specified TDOExpected is performed.

XSDRTDOB

XSDRTDOB TDIValue<“length” bits> TDOExpected<“length” bits>

Go to the shift-DR state and shift in TDI value; Compare the TDOExpected value against the
TDO value that was shifted out. TDOMask is not applied. All bits of TDO are compared with the
TDOExpected. Length comes from the XSDRSIZE instruction.

Because this instruction is primarily meant for FPGAs, if the TDO value does not match
TDOExpected, the programming is stopped with an error message. At the end of the
operations, continue to stay in the SHIFT-DR state.

XSDRTDOC

XSDRTDOC TDIValue<“length” bits>

TDOExpected<“length” bits>

Shift in the TDI value; compare the TDOExpected value against the TDO value that was shifted
out. Length comes from the XSDRSIZE instruction. TDOMask is not applied. All bits of TDO are
compared with the TDOExpected.
XAPP503 (v1.0) April 17, 2002 www.xilinx.com 17
1-800-255-7778

http://www.xilinx.com

SVF and XSVF File Formats for Xilinx Devices
R

If the TDO value does not match TDOExpected, stop the programming operation with an error
message. At the end of the operation continue to stay in the SHIFT-DR state.

XSDRTDOE

XSDRTDOE TDIValue<“length” bits>

TDOExpected<“length” bits>

Shift in the TDI value; compare the TDOExpected value against the TDO value that was shifted
out. Length comes from the last XSDSIZE instruction. TDOMask is not applied. All bits of TDO
are compared with the TDOExpected.

If the TDO value does not match the TDOExpected, stop the programming operations with an
error message. At the end of the operation, go to the XENDDR state.

XSETSDRMASKS

XSETSDRMASKS addressMask<“length” bits> dataMask<“length” bits>

Set SDR Address and Data Masks. The address and data mask of future XSDRINC
instructions are indicated using the XSETSDRMASKS instructions. The bits that are 1 in
addressMask indicate the address bits of the XSDR instruction; those that are 1 in dataMask
indicate the data bits of the XSDR instruction. “Length” comes from the value of the last
XSDRSize instruction.

Example:

XSETSDRMASKS 00800000 000003fc

XSDRINC

XSDRINC startAddress<“length” bits>

numTimes<1 byte> data[1]<“length2” bits> ...data[numTimes]<“length2” bits>

Do successive XSDR instructions. Length is specified by the last XSDRSIZE instruction.
Length2 is specified as the number of 1 bits in the dataMask section of the last
XSETSDRMASKS instruction.

The startAddress is the first XSDR to be read in. For numTimes iterations, increment the
address portion (indicated by the addressMask section of the last XSETSDRMASKS
instruction) by 1, and load in the next data portion into the dataMask section.

Notes:
1. An XSDRINC <start> 255 data0 data1 ... data255 actually does 256 SDR instruction since the start

address also represents an S instruction.

Example:

XSDRINC 004003fe 05 ff ff ff ff ff

XCOMPLETE

XCOMPLETE

End of XSVF file reached.

Example:

XCOMPLETE

XSTATE

XSTATE state<1 byte>

If state is zero, force TAP to Test-Logic-Reset state by holding TMS High and applying five TCK
cycles. If state is one, transition TAP from Test-Logic-Reset to Run-Test/Idle.

XENDIR

XENDIR state<1 byte>

Set the XSIR end state to Run-Test/Idle (0) or Pause-IR (1). The default is Run-Test/Idle.
18 www.xilinx.com XAPP503 (v1.0) April 17, 2002
1-800-255-7778

http://www.xilinx.com

SVF and XSVF File Formats for Xilinx Devices
R

XENDDR

XENDDR state<1 byte>

Set the XSDR and XSDRTDO end state to Run-Test/Idle (0) or Pause-DR (1). The default is
Run-Test/Idle.

XSIR2

XSIR2 length<2 bytes> TDIValue<"length" bits>

Go to the Shift-IR state and shift in the TDIValue. If the last XRUNTEST time is non-zero, go to
the Run-Test/Idle state and wait for the last specified XRUNTEST time. Otherwise, go to the
last specified XENDIR state.

Example:

XSIR2 0x0008 0xec

XCOMMENT

XCOMMENT char-string-ending-in-zero

The XCOMMENT command specifies an arbitrary length character string that ends with a zero
byte.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

04/17/02 1.0 Xilinx initial release.
XAPP503 (v1.0) April 17, 2002 www.xilinx.com 19
1-800-255-7778

http://www.xilinx.com

	Summary
	Introduction
	SVF - General
	XSVF - General

	Creating SVF and XSVF Files
	Creating an SVF File With 3.1i JTAG Programmer
	Creating an SVF File With 4.1i and 4.2i iMPACT Software
	Creating an SVF File With iMPACT Command Line
	Generating an XSVF File

	Understanding SVF and XSVF File Formats
	BSDL Files and JTAG
	Basic SVF Commands
	Specifying JTAG Shift Operations in SVF for Single-Device Chains
	Explanation of Table 2
	Specifying JTAG Shift Operations in SVF for Multiple Device Chains
	Explanation of Table 3
	SVF Header and Trailer Instructions
	Differences Between 3.1i JTAG Programmer and 4.1i iMPACT SVF Files
	XSVF Files
	Explanation of Table 6

	Conclusion
	Appendix A: SVF File Format for Xilinx Devices
	SVF Overview
	SVF Commands

	Appendix B: XSVF File Format
	XSVF Commands

	Revision History

